More pattern matching problems on compressed strings

Tim Nonner

June 1st, 2005
Let Σ be a finite alphabet, and let $u, v \in \Sigma^*$ with $u = a_1a_2 \cdots a_n$ ($a_i \in \Sigma$).

u is a **subword** of v if $v \in \Sigma^*a_1\Sigma^*a_2\Sigma^* \cdots a_n\Sigma^*$.

u is a **factor** of v if $v = xuy$ for some $x, y \in \Sigma^*$.

Example: aa is a subword of $babbbab$ but not a factor.
Let Σ be a finite alphabet, and let $u, v \in \Sigma^*$ with $u = a_1a_2 \cdots a_n$ ($a_i \in \Sigma$).

u is a subword of v if $v \in \Sigma^*a_1\Sigma^*a_2\Sigma^* \cdots a_n\Sigma^*$.

u is a factor of v if $v = xuy$ for some $x, y \in \Sigma^*$.

Example: aa is a subword of $babbbab$ but not a factor.
Two computational problems

SUBWORD:

INPUT: \(u, v \in \Sigma^* \)

QUESTION: Is \(u \) a subword of \(v \) ?

FACTOR:

INPUT: \(u, v \in \Sigma^* \)

QUESTION: Is \(u \) a factor of \(v \) ?
Two computational problems

SUBWORD:

INPUT: $u, v \in \Sigma^*$

QUESTION: Is u a subword of v?

FACTOR:

INPUT: $u, v \in \Sigma^*$

QUESTION: Is u a factor of v?
Compressed strings

A straight-line program over the alphabet Σ is a context-free grammar $H = (V, \Sigma, P, S)$ in Chomsky normal form such that:

- For every $A \in V$ there exists exactly one production of the form $A \rightarrow \alpha$ in P.
- There exists a linear ordering A_1, A_2, \ldots, A_n of V such that $S = A_1$ and for every production $A_i \rightarrow A_j A_k$ we have $i < j, k$.

$\text{eval}(H)$ denotes the unique word generated by H.

Let A be a nonterminal symbol of H. Then $\text{eval}(A)$ denotes the unique word generated by A in H.

Let $|H|$ be the number of nonterminal symbols of H.
A straight-line program over the alphabet Σ is a context-free grammar $H = (V, \Sigma, P, S)$ in Chomsky normal form such that:

- For every $A \in V$ there exists exactly one production of the form $A \rightarrow \alpha$ in P.
- There exists a linear ordering A_1, A_2, \ldots, A_n of V such that $S = A_1$ and for every production $A_i \rightarrow A_j A_k$ we have $i < j, k$.

$\text{eval}(H)$ denotes the unique word generated by H.

Let A be a nonterminal symbol of H. Then $\text{eval}(A)$ denotes the unique word generated by A in H.

Let $|H|$ be the number of nonterminal symbols of H.
A straight-line program over the alphabet Σ is a context-free grammar $H = (V, \Sigma, P, S)$ in Chomsky normal form such that:

- For every $A \in V$ there exists exactly one production of the form $A \rightarrow \alpha$ in P.
- There exists a linear ordering A_1, A_2, \ldots, A_n of V such that $S = A_1$ and for every production $A_i \rightarrow A_jA_k$ we have $i < j, k$.

$\text{eval}(H)$ denotes the unique word generated by H.

Let A be a nonterminal symbol of H. Then $\text{eval}(A)$ denotes the unique word generated by A in H.

Let $|H|$ be the number of nonterminal symbols of H.
A straight-line program over the alphabet Σ is a context-free grammar $H = (V, \Sigma, P, S)$ in Chomsky normal form such that:

- For every $A \in V$ there exists exactly one production of the form $A \rightarrow \alpha$ in P.
- There exists a linear ordering A_1, A_2, \ldots, A_n of V such that $S = A_1$ and for every production $A_i \rightarrow A_jA_k$ we have $i < j, k$.

$\text{eval}(H)$ denotes the unique word generated by H.

Let A be a nonterminal symbol of H. Then $\text{eval}(A)$ denotes the unique word generated by A in H.

Let $|H|$ be the number of nonterminal symbols of H.
Example: Let H be the straight-line program that consists of the following productions:

$$
S \rightarrow A_1 A_2 \\
A_1 \rightarrow A_4 A_3 \\
A_2 \rightarrow A_3 A_4 \\
A_3 \rightarrow A_6 A_5 \\
A_4 \rightarrow A_5 A_6 \\
A_5 \rightarrow a \\
A_6 \rightarrow b
$$

Then $\text{eval}(H) = abbabaab$ and $\text{eval}(A_1) = abba$.
Example: Let H be the straight-line program that consists of the following productions:

\[
S \rightarrow A_1 A_2 \\
A_1 \rightarrow A_4 A_3 \\
A_2 \rightarrow A_3 A_4 \\
A_3 \rightarrow A_6 A_5 \\
A_4 \rightarrow A_5 A_6 \\
A_5 \rightarrow a \\
A_6 \rightarrow b
\]

Then $\text{eval}(H) = abbabaab$ and $\text{eval}(A_1) = abba$.
Two computational problems

COMPRESSED-SUBWORD:
INPUT: Straight-line programs G and H
QUESTION: Is $\text{eval}(G)$ a subword of $\text{eval}(H)$?

COMPRESSED-FACTOR:
INPUT: Straight-line programs G and H
QUESTION: Is $\text{eval}(G)$ a factor of $\text{eval}(H)$?

Gasieniec, Karpinski, Miyazaki, Plandowski, Rytter, Shinohara, Takeda (mid 90's): COMPRESSED-FACTOR can be solved in polynomial time.

Yury Lifshits, Markus Lohrey: COMPRESSED-SUBWORD is NP-hard, even when restricted to the alphabet $\{a, b\}$.

Tim Nonner More pattern matching problems on compressed strings
Two computational problems

COMPRESSED-SUBWORD:
INPUT: Straight-line programs G and H
QUESTION: Is $\text{eval}(G)$ a subword of $\text{eval}(H)$?

COMPRESSED-FACTOR:
INPUT: Straight-line programs G and H
QUESTION: Is $\text{eval}(G)$ a factor of $\text{eval}(H)$?

Gasieniec, Karpinski, Miyazaki, Plandowski, Rytter, Shinohara, Takeda (mid 90's): COMPRESSED-FACTOR can be solved in polynomial time.

Yury Lifshits, Markus Lohrey: COMPRESSED-SUBWORD is NP-hard, even when restricted to the alphabet $\{a, b\}$.
Two computational problems

COMPRESSED-SUBWORD:
INPUT: Straight-line programs G and H
QUESTION: Is $\text{eval}(G)$ a subword of $\text{eval}(H)$?

COMPRESSED-FACTOR:
INPUT: Straight-line programs G and H
QUESTION: Is $\text{eval}(G)$ a factor of $\text{eval}(H)$?

Gasieniec, Karpinski, Miyazaki, Plandowski, Rytter, Shinohara, Takeda (mid 90's): COMPRESSED-FACTOR can be solved in polynomial time.

Yury Lifshits, Markus Lohrey: COMPRESSED-SUBWORD is NP-hard, even when restricted to the alphabet $\{a, b\}$.
Two computational problems

COMPRESSED-SUBWORD:
INPUT: Straight-line programs G and H
QUESTION: Is $\text{eval}(G)$ a subword of $\text{eval}(H)$?

COMPRESSED-FACTOR:
INPUT: Straight-line programs G and H
QUESTION: Is $\text{eval}(G)$ a factor of $\text{eval}(H)$?

Gasieniec, Karpinski, Miyazaki, Plandowski, Rytter, Shinohara, Takeda (mid 90's): COMPRESSED-FACTOR can be solved in polynomial time.

Yury Lifshits, Markus Lohrey: COMPRESSED-SUBWORD is NP-hard, even when restricted to the alphabet $\{a, b\}$.
Two easier computational problems

PARTLY-COMPRESSED-SUBWORD:
INPUT: A word \(g \) and a straight-line program \(H \)
QUESTION: Is \(g \) a subword of \(\text{eval}(H) \) ?

PARTLY-COMPRESSED-FACTOR:
INPUT: A word \(g \) and a straight-line program \(H \)
QUESTION: Is \(g \) a factor of \(\text{eval}(H) \) ?

Gasieniec, Gibbons, Rytter (1997):
PARTLY-COMPRESSED-FACTOR can be solved in \(O(\log |g| + \log |H|) \) time with \(O(|g| \cdot |H|) \) processors.

Today: PARTLY-COMPRESSED-SUBWORD can be solved in
\(O(|\Sigma| \cdot (\log |g| + \log |H|) + \log^2 |H|) \) time with \(O(|g| \cdot |H| + |H|^3) \) processors.
Two easier computational problems

PARTLY-COMPRESSED-SUBWORD:
INPUT: A word g and a straight-line program H
QUESTION: Is g a subword of $\text{eval}(H)$?

PARTLY-COMPRESSED-FACTOR:
INPUT: A word g and a straight-line program H
QUESTION: Is g a factor of $\text{eval}(H)$?

Gasieniec, Gibbons, Rytter (1997):
PARTLY-COMPRESSED-FACTOR can be solved in $O(\log |g| + \log |H|)$ time with $O(|g| \cdot |H|)$ processors.

Today: PARTLY-COMPRESSED-SUBWORD can be solved in $O(|\Sigma| \cdot (\log |g| + \log |H|) + \log^2 |H|)$ time with $O(|g| \cdot |H| + |H|^3)$ processors.
Two easier computational problems

PARTLY-COMPRESSED-SUBWORD:
INPUT: A word g and a straight-line program H
QUESTION: Is g a subword of $\text{eval}(H)$?

PARTLY-COMPRESSED-FACTOR:
INPUT: A word g and a straight-line program H
QUESTION: Is g a factor of $\text{eval}(H)$?

Gasieniec, Gibbons, Rytter (1997):
PARTLY-COMPRESSED-FACTOR can be solved in $O(\log |g| + \log |H|)$ time with $O(|g| \cdot |H|)$ processors.

Today: PARTLY-COMPRESSED-SUBWORD can be solved in $O(|\Sigma| \cdot (\log |g| + \log |H|) + \log^2 |H|)$ time with $O(|g| \cdot |H| + |H|^3)$ processors.
Two easier computational problems

PARTLY-COMPRESSED-SUBWORD:
INPUT: A word g and a straight-line program H
QUESTION: Is g a subword of $\text{eval}(H)$?

PARTLY-COMPRESSED-FACTOR:
INPUT: A word g and a straight-line program H
QUESTION: Is g a factor of $\text{eval}(H)$?

Gasieniec, Gibbons, Rytter (1997):
PARTLY-COMPRESSED-FACTOR can be solved in $O(\log |g| + \log |H|)$ time with $O(|g| \cdot |H|)$ processors.

Today:
PARTLY-COMPRESSED-SUBWORD can be solved in $O(|\Sigma| \cdot (\log |g| + \log |H|) + \log^2 |H|)$ time with $O(|g| \cdot |H| + |H|^3)$ processors.
A Parallel Random Access Machine (PRAM) is an ordinary computer, that is able to do operations in parallel.

If we want to do n operations in parallel, then we need n processors.

A problem can be solved in parallel, iff it can be solved on a PRAM in polylogarithmic time with a polynomial number of processors.

The class of problems, that can be solved in parallel on a PRAM, is the class NC.
A Parallel Random Access Machine (PRAM) is an ordinary computer, that is able to do operations in parallel.

If we want to do \(n \) operations in parallel, then we need \(n \) processors.

A problem can be solved in parallel, iff it can be solved on a PRAM in polylogarithmic time with a polynomial number of processors.

The class of problems, that can be solved in parallel on a PRAM, is the class \(\text{NC} \).
A Parallel Random Access Machine (PRAM) is an ordinary computer, that is able to do operations in parallel.

If we want to do n operations in parallel, then we need n processors.

A problem can be solved in parallel, iff it can be solved on a PRAM in polylogarithmic time with a polynomial number of processors.

The class of problems, that can be solved in parallel on a PRAM, is the class NC.
A **Parallel Random Access Machine (PRAM)** is an ordinary computer, that is able to do operations in parallel.

If we want to do \(n \) operations in parallel, then we need \(n \) processors.

A problem can be solved in parallel, iff it can be solved on a PRAM in polylogarithmic time with a polynomial number of processors.

The class of problems, that can be solved in parallel on a PRAM, is the class **NC**.
A problem can be solved **optimally** in parallel, iff the total number of operations needed is the time to solve this problem sequentially.

A problem can be solved **nearly optimally** in parallel, iff the number of processors needed is the time to solve this problem sequentially.
A problem can be solved **optimally** in parallel, iff the total number of operations needed is the time to solve this problem sequentially.

A problem can be solved **nearly optimally** in parallel, iff the number of processors needed is the time to solve this problem sequentially.
A straight-line program defines a directed acyclic graph (dag).

Problems related to dags form the following hierarchy:

1. can be solved in parallel
2. can be solved optimally/nearly optimally, if the transitive hull of the dag is known
3. can be solved optimally/nearly optimally in parallel

A straight-line program defines a directed acyclic graph (dag).

Problems related to dags form the following hierarchy:

1. can be solved in parallel
2. can be solved optimally/nearly optimally, if the transitive hull of the dag is known
3. can be solved optimally/nearly optimally in parallel

A straight-line program defines a directed acyclic graph (dag).

Problems related to dags form the following hierarchy:

1. can be solved in parallel
2. can be solved optimally/nearly optimally, if the transitive hull of the dag is known
3. can be solved optimally/nearly optimally in parallel

A straight-line program defines a directed acyclic graph (dag).

Problems related to dags form the following hierarchy:

1. can be solved in parallel
2. can be solved optimally/nearly optimally, if the transitive hull of the dag is known
3. can be solved optimally/nearly optimally in parallel

A straight-line program defines a directed acyclic graph (dag).

Problems related to dags form the following hierarchy:

1. can be solved in parallel
2. can be solved optimally/nearly optimally, if the transitive hull of the dag is known
3. can be solved optimally/nearly optimally in parallel

INPUT: A word \(g \) and a \(\epsilon \)-free and context-free grammar \(K \) in Chomsky normal form

QUESTION: Does \(g \) belong to the language \(L(K) \)?

Let \(t \) be the number of nonterminal symbols and \(s \) the number of production rules of \(K \). Then this problem can be solved in \(O(\log |g|) \) time with \(O(t^3 \cdot |g|^6 + s) \) processors.

Reduction of PARTLY-COMPRESSED-SUBWORD: Generate a grammar \(K \), such that \(L(K) \) is the set of all words, that are subwords of \(\text{eval}(H) \).

PARTLY-COMPRESSED-SUBWORD can be solved in \(O(\log |g| + \log^2 |H|) \) time with \(O(|H|^3 \cdot |g|^6) \) processors.
Reduction

INPUT: A word g and a ϵ-free and context-free grammar K in Chomsky normal form
QUESTION: Does g belong to the language $L(K)$?

Let t be the number of nonterminal symbols and s the number of production rules of K. Then this problem can be solved in $O(\log |g|)$ time with $O(t^3 \cdot |g|^6 + s)$ processors.

Reduction of PARTLY-COMPRESSED-SUBWORD: Generate a grammar K, such that $L(K)$ is the set of all words, that are subwords of $\text{eval}(H)$.

PARTLY-COMPRESSED-SUBWORD can be solved in $O(\log |g| + \log^2 |H|)$ time with $O(|H|^3 \cdot |g|^6)$ processors.
INPUT: A word g and a ϵ-free and context-free grammar K in Chomsky normal form

QUESTION: Does g belong to the language $L(K)$?

Let t be the number of nonterminal symbols and s the number of production rules of K. Then this problem can be solved in $O(\log |g|)$ time with $O(t^3 \cdot |g|^6 + s)$ processors.

Reduction of PARTLY-COMPRESSED-SUBWORD: Generate a grammar K, such that $L(K)$ is the set of all words, that are subwords of $\text{eval}(H)$.

PARTLY-COMPRESSED-SUBWORD can be solved in $O(\log |g| + \log^2 |H|)$ time with $O(|H|^3 \cdot |g|^6)$ processors.
INPUT: A word g and a ϵ-free and context-free grammar K in chomsky normal form

QUESTION: Does g belong to the language $L(K)$?

Let t be the number of nonterminal symbols and s the number of production rules of K. Then this problem can be solved in $O(\log |g|)$ time with $O(t^3 \cdot |g|^6 + s)$ processors.

Reduction of PARTLY-COMPRESSED-SUBWORD: Generate a grammar K, such that $L(K)$ is the set of all words, that are subwords of $\text{eval}(H)$.

PARTLY-COMPRESSED-SUBWORD can be solved in $O(\log |g| + \log^2 |H|)$ time with $O(|H|^3 \cdot |g|^6)$ processors.
The number of processors is quite big.

Constraint: Assume, that the size of the alphabet is quite small / the size of the alphabet is polylogarithmically bounded.
The number of processors is quite big.

Constraint: Assume, that the size of the alphabet is quite small / the size of the alphabet is polylogarithmically bounded.
PARTLY-COMPRESSED-SUBWORD is a language recognition problem for a compressed word.

Let $m := |g|$, and let for $i \in \{0, \ldots, m-1\}$ the number $\text{IN}(g, A, i)$ be the maximal number, such that $g[i+1..\text{IN}(g, A, i)]$ is a subword of $\text{eval}(A)$. Let $\text{IN}(g, A, m) := m$ and let $\text{IN}(g, A) : \{0, \ldots, m\} \rightarrow \{0, \ldots, m\} : i \mapsto \text{IN}(g, A, i)$.

CIRCUIT EVALUATION PROBLEM:
INPUT: A circuit C over a Monoid M and a $m \in M$.
QUESTION: Is $\text{eval}(C) = m$?

PARTLY-COMPRESSED-SUBWORD is the circuit evaluation problem for the circuit H_L.

PARTLY-COMPRESSED-SUBWORD can be solved in $O(|H|)$ time with $O(|g|)$ processors.
PARTLY-COMPRESSED-SUBWORD is a language recognition problem for a compressed word.

Let $m := |g|$, and let for $i \in \{0, \ldots, m - 1\}$ the number $IN(g, A, i)$ be the maximal number, such that $g[i + 1..IN(g, A, i)]$ is a subword of $\text{eval}(A)$. Let $IN(g, A, m) := m$ and let $IN(g, A) : \{0, \ldots, m\} \rightarrow \{0, \ldots, m\} : i \mapsto IN(g, A, i)$.

CIRCUIT EVALUATION PROBLEM:
INPUT: A circuit C over a Monoid M and a $m \in M$.
QUESTION: Is $\text{eval}(C) = m$?

PARTLY-COMPRESSED-SUBWORD is the circuit evaluation problem for the circuit H_L.

PARTLY-COMPRESSED-SUBWORD can be solved in $O(|H|)$ time with $O(|g|)$ processors.
PARTLY-COMPRESSED-SUBWORD is a language recognition problem for a compressed word.

Let $m := |g|$, and let for $i \in \{0, \ldots, m - 1\}$ the number $IN(g, A, i)$ be the maximal number, such that $g[i + 1..IN(g, A, i)]$ is a subword of $\text{eval}(A)$. Let $IN(g, A, m) := m$ and let

$IN(g, A) : \{0, \ldots, m\} \rightarrow \{0, \ldots, m\} : i \mapsto IN(g, A, i)$.

CIRCUIT EVALUATION PROBLEM:
INPUT: A circuit C over a Monoid M and a $m \in M$.
QUESTION: Is $\text{eval}(C) = m$?

PARTLY-COMPRESSED-SUBWORD is the circuit evaluation problem for the circuit H_L.

PARTLY-COMPRESSED-SUBWORD can be solved in $O(|H|)$ time with $O(|g|)$ processors.
PARTLY-COMPRESSED-SUBWORD is a language recognition problem for a compressed word.

Let $m := |g|$, and let for $i \in \{0, \ldots, m - 1\}$ the number $\text{IN}(g, A, i)$ be the maximal number, such that $g[i + 1..\text{IN}(g, A, i)]$ is a subword of $\text{eval}(A)$. Let $\text{IN}(g, A, m) := m$ and let $\text{IN}(g, A) : \{0, \ldots, m\} \rightarrow \{0, \ldots, m\} : i \mapsto \text{IN}(g, A, i)$.

CIRCUIT EVALUATION PROBLEM:
INPUT: A circuit C over a Monoid M and a $m \in M$.
QUESTION: Is $\text{eval}(C) = m$?

PARTLY-COMPRESSED-SUBWORD is the circuit evaluation problem for the circuit H_L.

PARTLY-COMPRESSED-SUBWORD can be solved in $O(|H|)$ time with $O(|g|)$ processors.
PARTLY-COMPRESSED-SUBWORD is a language recognition problem for a compressed word.

Let \(m := |g| \), and let for \(i \in \{0, \ldots, m - 1\} \) the number \(\text{IN}(g, A, i) \) be the maximal number, such that \(g[i + 1..\text{IN}(g, A, i)] \) is a subword of \(\text{eval}(A) \). Let \(\text{IN}(g, A, m) := m \) and let \(\text{IN}(g, A) : \{0, \ldots, m\} \rightarrow \{0, \ldots, m\} : i \mapsto \text{IN}(g, A, i) \).

CIRCUIT EVALUATION PROBLEM:

INPUT: A circuit \(C \) over a Monoid \(M \) and a \(m \in M \).

QUESTION: Is \(\text{eval}(C) = m \)?

PARTLY-COMPRESSED-SUBWORD is the circuit evaluation problem for the circuit \(H_L \).

PARTLY-COMPRESSED-SUBWORD can be solved in \(O(|H|) \) time with \(O(|g|) \) processors.
The circuit H_L can be evaluated in $O(\log \text{treesize}(H_L))$ time with $O(|H_L| \cdot |g|)$ processors.

General Idea: Calculate the output of enough gates of H_L, such that the treesize of H_L can be reduced to a polynomial size.
The circuit H_L can be evaluated in $O(\log \text{treesize}(H_L))$ time with $O(|H_L| \cdot |g|)$ processors.

General Idea: Calculate the output of enough gates of H_L, such that the treesize of H_L can be reduced to a polynomial size.
Let A be a nonterminal symbol of H, and let U be the set of all characters, that appear in $\text{eval}(A)$.

There is a maximal natural number $\text{scat}(A)$, such that all words $w \in U^*$ with $w \leq \text{scat}(A)$ are subwords of $\text{eval}(A)$.

If $\text{scat}(A) \geq |g|$, then $\text{IN}(g, A)$ can be calculated in $O(\log |g|)$ time with $O(|g|)$ processors.

Goal: find a lower bound for $\text{scat}(A)$.
Let A be a nonterminal symbol of H, and let U be the set of all characters, that appear in $\text{eval}(A)$.

There is a maximal natural number $\text{scat}(A)$, such that all words $w \in U^*$ with $w \leq \text{scat}(A)$ are subwords of $\text{eval}(A)$.

If $\text{scat}(A) \geq |g|$, then $\text{IN}(g, A)$ can be calculated in $O(\log |g|)$ time with $O(|g|)$ processors.

Goal: find a lower bound for $\text{scat}(A)$.
Let A be a nonterminal symbol of H, and let U be the set of all characters, that appear in $\text{eval}(A)$.

There is a maximal natural number $\text{scat}(A)$, such that all words $w \in U^*$ with $w \leq \text{scat}(A)$ are subwords of $\text{eval}(A)$.

If $\text{scat}(A) \geq |g|$, then $\text{IN}(g, A)$ can be calculated in $O(\log |g|)$ time with $O(|g|)$ processors.

Goal: find a lower bound for $\text{scat}(A)$.
Let A be a nonterminal symbol of H, and let U be the set of all characters, that appear in $\text{eval}(A)$.

There is a maximal natural number $\text{scat}(A)$, such that all words $w \in U^*$ with $w \leq \text{scat}(A)$ are subwords of $\text{eval}(A)$.

If $\text{scat}(A) \geq |g|$, then $\text{IN}(g, A)$ can be calculated in $O(\log |g|)$ time with $O(|g|)$ processors.

Goal: find a lower bound for $\text{scat}(A)$.
PATHS(A) is the set of all paths $A_1A_2 \ldots A_n$ in the graph H with the following properties:

- $A_1 = A$
- All characters in U appear in every word $\text{eval}(A_1), \ldots, \text{eval}(A_{n-1})$.
- There is at least one character in U, that does not appear in the word $\text{eval}(A_n)$.

$$\text{scat}(A) \geq |\text{PATHS}(A)|/|H|$$

If $|\text{PATHS}(A)| \geq |H| \cdot |g|$ then $\text{IN}(p, A)$ can be calculated in $O(\log |g|)$ time with $O(|g|)$ processors.
PATHS(A) is the set of all paths $A_1A_2 \ldots A_n$ in the graph H with the following properties:

- $A_1 = A$
- All characters in U appear in every word $\text{eval}(A_1), \ldots, \text{eval}(A_{n-1})$.
- There is at least one character in U, that does not appear in the word $\text{eval}(A_n)$.

$\text{scat}(A) \geq |\text{PATHS}(A)|/|H|$

If $|\text{PATHS}(A)| \geq |H| \cdot |g|$ then $\text{IN}(p, A)$ can be calculated in $O(\log |g|)$ time with $O(|g|)$ processors.
PATHS(A) is the set of all paths $A_1A_2\ldots A_n$ in the graph H with the following properties:

- $A_1 = A$
- All characters in U appear in every word $\text{eval}(A_1), \ldots, \text{eval}(A_{n-1})$.
- There is at least one character in U, that does not appear in the word $\text{eval}(A_n)$.

$$\text{scat}(A) \geq |\text{PATHS}(A)|/|H|$$

If $|\text{PATHS}(A)| \geq |H| \cdot |g|$ then $\text{IN}(p, A)$ can be calculated in $O(\log |g|)$ time with $O(|g|)$ processors.
The algorithm

Calculate the transitive hull of H in $O(\log^2 |H|)$ time with $O(|H|^3)$ processors.

Let V_i be the set of all nonterminal symbols A of H, such that i is the number of characters, that appear in $\text{eval}(A)$. Determine the sets $\{V_i | i \in \{1, \ldots, |\Sigma|\}\}$ in $O(|\Sigma|)$ time with $O(|H|)$ processors.

Determine the set of nonterminal symbols $O := \{A \in V_H | \text{PATHS}(A) \geq |H| \cdot |g|\}$ in $O(\log |g| + \log |H|)$ time with $O(|H|)$ processors.

Calculate the monoidelements $\{\text{IN}(g, A) | A \in O \cup V_1\}$ in $O(\log |g|)$ time with $O(|g| \cdot |H|)$ processors.

Shorten H_L.
The algorithm

Calculate the transitive hull of H in $O(\log^2 |H|)$ time with $O(|H|^3)$ processors.

Let V_i be the set of all nonterminal symbols A of H, such that i is the number of characters, that appear in $\text{eval}(A)$. Determine the sets $\{V_i| i \in \{1, \ldots, |\Sigma|\}\}$ in $O(|\Sigma|)$ time with $O(|H|)$ processors.

Determine the set of nonterminal symbols $O := \{A \in V_H| \text{PATHS}(A) \geq |H| \cdot |g|\}$ in $O(\log |g| + \log |H|)$ time with $O(|H|)$ processors.

Calculate the monoidelements $\{\text{IN}(g, A)| A \in O \cup V_1\}$ in $O(\log |g|)$ time with $O(|g| \cdot |H|)$ processors.

Shorten H_L.
The algorithm

Calculate the transitive hull of H in $O(\log^2 |H|)$ time with $O(|H|^3)$ processors.

Let V_i be the set of all nonterminal symbols A of H, such that i is the number of characters, that appear in $\text{eval}(A)$. Determine the sets $\{V_i| i \in \{1, \ldots, |\Sigma|\}\}$ in $O(|\Sigma|)$ time with $O(|H|)$ processors.

Determine the set of nonterminal symbols $O := \{A \in V_H | \text{PATHS}(A) \geq |H| \cdot |g|\}$ in $O(\log |g| + \log |H|)$ time with $O(|H|)$ processors.

Calculate the monoidelements $\{\text{IN}(g, A)|A \in O \cup V_1\}$ in $O(\log |g|)$ time with $O(|g| \cdot |H|)$ processors.

Shorten H_L.

Tim Nonner | More pattern matching problems on compressed strings
The algorithm

Calculate the transitive hull of H in $O(\log^2 |H|)$ time with $O(|H|^3)$ processors.

Let V_i be the set of all nonterminal symbols A of H, such that i is the number of characters, that appear in $\text{eval}(A)$. Determine the sets $\{V_i | i \in \{1, \ldots, |\Sigma|\}\}$ in $O(|\Sigma|)$ time with $O(|H|)$ processors.

Determine the set of nonterminal symbols

$O := \{A \in V_H | \text{PATHS}(A) \geq |H| \cdot |g|\}$ in $O(\log |g| + \log |H|)$ time with $O(|H|)$ processors.

Calculate the monoidelements $\{\text{IN}(g, A) | A \in O \cup V_1\}$ in $O(\log |g|)$ time with $O(|g| \cdot |H|)$ processors.

Shorten H_L.

Tim Nonner More pattern matching problems on compressed strings
The algorithm

Calculate the transitive hull of H in $O(\log^2 |H|)$ time with $O(|H|^3)$ processors.

Let V_i be the set of all nonterminal symbols A of H, such that i is the number of characters, that appear in $\text{eval}(A)$. Determine the sets $\{V_i | i \in \{1, \ldots, |\Sigma|\}\}$ in $O(|\Sigma|)$ time with $O(|H|)$ processors.

Determine the set of nonterminal symbols $O := \{A \in \mathcal{V}_H | \text{PATHS}(A) \geq |H| \cdot |g|\}$ in $O(\log |g| + \log |H|)$ time with $O(|H|)$ processors.

Calculate the monoid elements $\{\text{IN}(g, A) | A \in O \cup V_1\}$ in $O(\log |g|)$ time with $O(|g| \cdot |H|)$ processors.

Shorten H_L.
treesize\((H_L) < (|g| \cdot |H|)^{|\Sigma|}

The circuit \(H_L\) can then be evaluated in \(O(|\Sigma| \cdot (\log |g| + \log |H|))\) time with \(O(|H| \cdot |g|)\) processors.
treesize(H_L) < ($|g| \cdot |H|$)$^{|\Sigma|}$

The circuit H_L can then be evaluated in $O(|\Sigma| \cdot (\log |g| + \log |H|))$ time with $O(|H| \cdot |g|)$ processors.
If the size of alphabet is polylogarithmically bounded and the transitive hull of H is known, then \textsc{Partly-compressed-subword} can be solved nearly optimally.
Any questions?